全书分为三个部分。第一部分了解强化学习应用,了解强化学习基本知识,搭建强化学习测试环境。该部分包括:强化学习的概况、强化学习简单示例、强化学习算法的常见思想、强化学习的应用、强化学习测试环境的搭建。第二部分介绍强化学习理论与深度强化学习算法。强化学习理论部分:Markov决策过程的数学描述、Monte Carlo方法和时序差分方法的数学理论;深度强化学习算法部分:详细剖析全部具有重要影响力的深度强化学习算法,结合TensorFlow实现源码。第三部分介绍强化学习综合应用案例。
强化学习:原理与Python实现 (智能系统与技术丛书) EPUB, PDF, MOBI, AZW3, TXT, FB2, DjVu, Kindle电子书免费下载。