本书一共分为19章,1~7章是编程基础,为了让那些没有编程经验的但是又想从事数据分析工作的学员有个入门的基础。8~19章则介绍了机器学习领域中常用的算法,他们分别是线性回归,逻辑回归,神经网络,线性判别,最近邻算法,决策树与随机森林,朴素贝叶斯,支持向量机,主成分分析,奇异值分解,k-means聚类。在第19章中则着重介绍了现在比较流行的深度学习框架。
Python机器学习开发实战(Python机器学习入门,以实战为重点,配有大量代码和案例,简单、快速、易学!) EPUB, PDF, MOBI, AZW3, TXT, FB2, DjVu, Kindle电子书免费下载。
王新宇,上海大学副教授,主讲机器学习课程,研究方向包括金融行业大数据挖掘、医学行业大数据挖掘、图像识别以及高性能计算。