☆ 是精准推荐还是算法歧视?☆ 是提高行政效率还是侵犯隐私?
:
算法规制的目标无他:
其一,警惕本来应当是中立的智能应用,被用来掩饰未取得“多数人同意”的少数人集权;其二,建立利益相关者对话和商谈的场域,避免法律沦为“技术寡头”的帮凶。本书从凯伦·杨“跳出‘数据道德’或‘AI道德’窠臼”以寻求“数据驱动机器时代正义、民主和自由”的主张开始,以李·拜格雷夫“将数据保护法的价值观贯彻进信息系统架构之中”的倡导结束,中间穿插着马丁·洛奇等学者对“风险导向监管路径”的反思与改进;这背后是“自然人正义观”与“算法正义观”从排斥到融合、“个人数据保护”与“技术公共利益”从对立到统一的艰苦历程。本书英文版虽出版于新冠疫情爆发之前,但作者们从不同角度对“算法规制”的路径探寻,无不包含着从“个人健康”促进“社会健康”的现实隐喻,以及人本主义“责有攸归”的道德哲学,对我国“国家治理体系和治理能力现代化”以及疫情常态化下慎终如始“科学防治、精准施策”的稳步推进有着深刻的启发和借鉴意义。
驯服算法:数字歧视与算法规制 EPUB, PDF, MOBI, AZW3, TXT, FB2, DjVu, Kindle电子书免费下载。
:
凯伦·杨:英国牛津大学法学博士,英国伯明翰大学法学院和计算机学院的跨学科教授,墨尔本大学法学院杰出访问研究员,欧盟人工智能高级别专家组成员、欧洲犯罪问题委员会(CDPC)人工智能和刑法专家工作组特别顾问。曾担任纳菲尔德生物伦理委员会基因组编辑和人类生殖工作组主席(2016-2018)、世界经济论坛全球未来生物技术理事会成员。出版有《法律、规制和技术牛津手册》《法律与规制简介》等著作,在《Modern Law Review》《Legal Studies》等发表多篇论文。马丁·洛奇:伦敦政治经济学院教授,研究方向为政治学和公共政策,兼任风险和监管分析中心主任。
【译者简介】:
林少伟:西南政法大学民商法学院副教授,商法教研室副主任。英国爱丁堡大学法学博士、伦敦国王学院商法硕士、西南政法大学法学学士;重庆市青年拔尖人才计划入选者、霍英东教育基金奖获得者。