本书是一本系统介绍深度学习基础知识和理论原理的入门书籍。本书从神经网络的基本结构入手,详细推导了前向传播与反向传播的数学公式和理论支持,详细介绍了如今各种优化神经网络的梯度优化算法和正则化技巧,给出了在实际应用中的超参数调试和网络训练的技巧。同时,也介绍了典型的卷积神经网络(CNN)和循环神经网络(RNN)。除了介绍理论基础外,本书以Python为基础,详细介绍了如今主流的深度学习框架PyTorch和TensorFlow,并分别使用这两种框架来构建相应的项目,帮助读者从理论和实践中提高自己的深度学习知识水平。
深度学习入门:基于PyTorch和TensorFlow的理论与实现 EPUB, PDF, MOBI, AZW3, TXT, FB2, DjVu, Kindle电子书免费下载。