本书以实践为宗旨,对数据挖掘进行了详细地入门引导。本书囊括了比赛结果预测、电影推荐、特征提取、好友推荐、破解验证码、作者归属、新闻聚类等大量经典案例,并以此为基础提供了大量练习和额外活动。在练习中,本书介绍了数据挖掘的基本工具和基本方法;在额外活动中,本书为深入了解数据挖掘指明了方向。 本书适合希望应用Python进行数据挖掘的程序员阅读。
Python数据挖掘入门与实践(第2版)(图灵图书) EPUB, PDF, MOBI, AZW3, TXT, FB2, DjVu, Kindle电子书免费下载。
罗伯特·莱顿(Robert Layton) 数据科学家,计算机科学博士,网络犯罪问题和文本分析方面的专家。拥有多年Python编程经验,参与开发过scikit-learn库等众多开源软件,曾担任2014年“谷歌编程之夏”项目导师,也曾多次在PyCon Au上做报告。他创立了数据挖掘咨询公司DataPipeline,以及为创业公司提供技术咨询和支持的Eurekative公司,还运营着LearningTensorFlow 网站。