本书通过具体的编程实践案例,全面系统地讲述了机器学习涉及的核心内容。首先介绍新特性以及安装OpenCV 4构建计算机视觉应用程序。你将探索机器学习的基础知识,学习设计用于图像处理的各种算法。本书将逐步介绍有监督学习和无监督学习。你将获得使用Python中的scikit-learn开发各种机器学习应用程序的实践经验。后续章节将重点介绍决策树、支持向量机、贝叶斯学习等各种机器学习算法,以及如何将这些算法应用于目标检测等计算机视觉操作。然后,你将深入研究深度学习和集成学习,并探索它们在现实世界中的应用。最后,你将学习用于构建图像处理系统的的Intel OpenVINO。
机器学习:使用OpenCV、Python和scikit-learn进行智能图像处理(原书第2版)(基于OpenCV和Python解决计算机视觉和机器学习中的问题) (智能系统与技术丛书) EPUB, PDF, MOBI, AZW3, TXT, FB2, DjVu, Kindle电子书免费下载。
阿迪蒂亚·夏尔马(Aditya Sharma)是罗伯特·博世(Robert Bosch)公司的一名高级工程师,致力于解决真实世界的自动计算机视觉问题。曾获得罗伯特·博世公司2019年人工智能编程马拉松的第一名。在印度理工学院,他于2019年的ICIP和2019年的MICCAI上发表了有关深度学习医学成像的论文。在国际信息技术学院,他的工作主要是文档图像超分辨。 他还是一个积极进取的作家,曾为DataCamp和LearnOpenCV撰写过很多有关机器学习和深度学习的文章。他不仅经营着自己的YouTube频道,还在NCVPRIPG会议(2017)以及阿里格尔穆斯林大学(Aligarh Muslim University)的深度学习研讨会上做过演讲。 维什韦什·拉维·什里马利(Vishwesh Ravi Shrimali)于2018年毕业于彼拉尼博拉理工学院(BITS Pilani)机械工程专业。此后一直在BigVision LLC从事深度学习和计算机视觉方面的工作,还参与了官方OpenCV课程的创建。他对编程和人工智能有着浓厚的兴趣,并将其应用到机械工程项目中。他还在LearnOpenCV上写了多篇有关OpenCV和深度学习的博客。除了撰写博客和做项目,他喜欢散步和弹奏木吉他。 迈克尔·贝耶勒(Michael Beyeler)是华盛顿大学神经工程和数据科学的博士后研究员,致力于仿生视觉的计算模型研究,以为盲人植入人工视网膜(仿生眼睛),改善盲人的感知体验。他的工作属于神经科学、计算机工程、计算机视觉和机器学习的交叉领域。他还是几个开源软件项目的主要贡献者,并在Python、C/C++、CUDA、MATLAB和Android等方面拥有专业的编程经验。迈克尔在加州大学欧文分校获得计算机科学博士学位,在瑞士苏黎世联邦理工学院获得生物医学工程硕士学位和电子工程学士学位。