机器学习算法实践:推荐系统的协同过滤理论及其应用

机器学习算法实践:推荐系统的协同过滤理论及其应用

作者
王建芳
语言
简体中文
出版社
清华大学出版社
出版日期
2019年1月16日
品牌
清华大学出版社
纸书页数
275页
电子书格式
epub,pdf,mobi,azw3,txt,fb2,djvu
文件大小
17232 KB
下载次数
6003
更新日期
2023-05-11
运行环境
PC/Windows/Linux/Mac/IOS/iPhone/iPad/iBooks/Kindle/Android/安卓/平板
内容简介

个性化推荐能够根据用户的历史行为显式或者隐式地挖掘用户潜在的兴趣和需求,并为其推送个性化信息,因此受到研究者的追捧及工业界的青睐,其研究具有重大的学术价值及商业应用价值,已广泛应用于大型电子商务平台、社交平台、新闻客户端以及其他各类旅游和娱乐类网站中。本书内容丰富,较全面地介绍了基于协同过滤的推荐系统存在的问题、解决方法和评估策略,主要内容涉及协同过滤推荐算法中的时序技术、矩阵分解技术和社交网络信任技术等知识。本书可供从事推荐系统、人工智能、机器学习、模式识别和信息检索等领域的科研人员及研究生阅读、参考。

机器学习算法实践:推荐系统的协同过滤理论及其应用 EPUB, PDF, MOBI, AZW3, TXT, FB2, DjVu, Kindle电子书免费下载。

《机器学习算法实践:推荐系统的协同过滤理论及其应用》电子书免费下载

epub下载 pdf下载 mobi下载 azw3下载 txt下载 fb2下载 djvu下载

猜你喜欢