Develop generative models for a variety of real-world use-cases and deploy them to production
Key Features
Discover various GAN architectures using Python and Keras library
Understand how GAN models function with the help of theoretical and practical examples
Apply your learnings to become an active contributor to open source GAN applications
Book Description
Generative Adversarial Networks (GANs) have revolutionized the fields of machine learning and deep learning. This book will be your first step towards understanding GAN architectures and tackling the challenges involved in training them.
This book opens with an introduction to deep learning and generative models, and their applications in artificial intelligence (AI). You will then learn how to build, evaluate, and improve your first GAN with the help of easy-to-follow examples. The next few chapters will guide you through training a GAN model to produce and improve high-resolution images. You will also learn how to implement conditional GANs that give you the ability to control characteristics of GAN outputs. You will build on your knowledge further by exploring a new training methodology for progressive growing of GANs. Moving on, you'll gain insights into state-of-the-art models in image synthesis, speech enhancement, and natural language generation using GANs. In addition to this, you'll be able to identify GAN samples with TequilaGAN.
By the end of this book, you will be well-versed with the latest advancements in the GAN framework using various examples and datasets, and you will have the skills you need to implement GAN architectures for several tasks and domains, including computer vision, natural language processing (NLP), and audio processing.
Foreword by Ting-Chun Wang, Senior Research Scientist, NVIDIA
What you will learn
Learn how GANs work and the advantages and challenges of working with them
Control the output of GANs with the help of conditional GANs, using embedding and space manipulation
Apply GANs to computer vision, NLP, and audio processing
Understand how to implement progressive growing of GANs
Use GANs for image synthesis and speech enhancement
Explore the future of GANs in visual and sonic arts
Implement pix2pixHD to turn semantic label maps into photorealistic images
Who this book is for
This book is for machine learning practitioners, deep learning researchers, and AI enthusiasts who are looking for a perfect mix of theory and hands-on content in order to implement GANs using Keras. Working knowledge of Python is expected. Table of Contents
Deep Learning Basics and Environment Setup
Introduction to Generative Models
Implementing your fist GAN
Evaluating your first GAN
Improving your first GAN
Synthesizing and Manipulating Images with GANs
Progressive Growing of GANs
Natural Language Generation with GANs
Text-To-Image Synthesis with GANs
Speech Enhancement with GANs
TequilaGAN: Identifying GAN samples
What’s Next in GANs
Hands-On Generative Adversarial Networks with Keras: Your guide to implementing next-generation generative adversarial networks (English Edition) EPUB, PDF, MOBI, AZW3, TXT, FB2, DjVu, Kindle电子书免费下载。