Adversarial Machine Learning (English Edition)

Adversarial Machine Learning (English Edition)

作者
Anthony D. Joseph、Blaine Nelson、Benjamin I. P. Rubinstein、J. D. Tygar
语言
英语
出版社
Cambridge University Press
出版日期
2019年2月21日
纸书页数
341页
电子书格式
epub,pdf,mobi,azw3,txt,fb2,djvu
文件大小
17626 KB
下载次数
1490
更新日期
2023-05-31
运行环境
PC/Windows/Linux/Mac/IOS/iPhone/iPad/iBooks/Kindle/Android/安卓/平板
内容简介

Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race.

Adversarial Machine Learning (English Edition) EPUB, PDF, MOBI, AZW3, TXT, FB2, DjVu, Kindle电子书免费下载。

《Adversarial Machine Learning (English Edition)》电子书免费下载

epub下载 pdf下载 mobi下载 azw3下载 txt下载 fb2下载 djvu下载

猜你喜欢